
Design Document
for

Project: ManageMe (Group 2)
An All-in-One Self-Management System

Prepared by
Ankur Sharma (2015CS50278)
Lovish Madaan (2015CS50286)
Sudeep Agrawal (2015CS50295)
Siddharth Khera (2015MT60567)

Supervised by
Prof. S.C. Gupta

COL 740 - Software Engineering
Indian Institute of Technology, Delhi

Hauz Khas, New Delhi

1

Contents

1 Introduction 3

1.1 Purpose . 3

1.2 Scope . 3

1.3 Overview . 3

1.4 References . 4

1.5 Definitions, Acronyms and Abbreviations . 4

1.5.1 Definitions . 4

1.5.2 Abbreviations . 4

2 System Description 5

2.1 Architectural Design . 5

2.2 Module Definitions . 5

2.2.1 User . 5

2.2.2 App Interface . 5

2.2.3 Active Viewer Module . 6

2.2.4 Authentication Module . 6

2.2.5 Expense Management Module . 6

2.2.6 Calories Management Module . 6

2.2.7 Notes Management Module . 6

2.2.8 Tagging Module . 6

2.2.9 Filtering Module . 6

2.2.10 Export Module . 7

2.3 Technology and Tools used . 7

2.3.1 Front End Interface . 7

2.3.2 Backend Server and Database . 7

2.3.3 Development Tools . 7

3 Detailed Design 8

3.1 Module APIs . 8

3.1.1 Sign-In Module . 8

3.1.2 Expense Management Module . 8

3.1.3 Calories Management Module . 9

3.1.4 Notes Management Module . 9

3.1.5 Filtering Module . 9

3.1.6 Tagging Module . 10

3.1.7 Export Module . 10

3.2 Database Design . 10

3.2.1 User Database . 11

3.2.2 Expense Database . 11

3.2.3 Calorie Database . 11

3.2.4 Notes Database . 11

3.2.5 ER Diagram . 12

3.3 Screen Layouts . 13

3.4 Use Cases . 23

3.4.1 Use Case Scenario-1: Sign-in . 23

3.4.2 Use Case Scenario-2: Expense Management . 25

3.4.3 Use Case Scenario-3: Calories Management . 29

3.4.4 Use Case Scenario-4: Notes Management . 31

3.4.5 Use-Case Scenario-5: Tagging & Filtering Entries . 35

4 Deployment Design 38

4.1 Three-Tier deployment . 38

4.1.1 Tier-1: Client . 38

4.1.2 Tier-2: Application Interface . 38

4.1.3 Tier-3: Database . 38

2

3

Chapter 1

Introduction

1.1 Purpose

The purpose of this document is to enlist the design specifications for the Self-Management application (Man-
ageMe) in detail. This document serves as a complete guide on the design of the system, listing in detail all
the modules and their dependencies with each other. This document also describes components like the server
architecture and database system.

1.2 Scope

Scope of this project is building a complete standalone android application which will have different function-
alities, all specific to different self-management tasks. The main features for self-management include:

• Note Taking: Help users take notes of important things with functionalities like better organization,
hide features for notes and filtering according to the tags assigned to individual notes.

• Expense Tracker: Help users manage their expenses with the facility to organize expenses according
to different categories.

• Calorie Tracker: Help users manage their daily food intake and calories with the option to add items
already present in the database along with the functionality to add new items and calories manually.

We believe that these three use-cases are highly interdependent on one another and thus helps to have only
one application managing the three tasks.

1.3 Overview

This report contains all the information needed to understand the design specifications of ManageMe applica-
tion. We organize this document as follows:

• Section 2 contains the architectural design specifics with relevant figures for better understanding. It
also contains the technologies used.

• Section 3 consists of the detailed design with API function details for each module along with the database
design and ER diagram for our system.

• Section 4 highlights the deployment design and the 3-tiered strategy followed by us.

1.4 References

• ManageMe SRS Document.

• Design Format Structure for this document from moodle.

1.5 Definitions, Acronyms and Abbreviations

1.5.1 Definitions

• ManageMe: The self-management application detailed in this document.

• Customer/User: Here the customer and user are both the same as we are developing this application
for the end user directly. Users will be those people who want to personalise and manage their own
experience in their own way.

• Supplier: We will be the sole suppliers of the application. We will build the app and publish it to the
web where users will be able to download and use it.

• Item: An item is a data entry which could be of any category i.e. an item could be a note, an expense
entry, food entry etc.

• App Interface: This refers to the frontend application that the user will be interacting with and broadly
acts as a mediator between the user and the backend server.

1.5.2 Abbreviations

• DB - Database.

4

5

Chapter 2

System Description

2.1 Architectural Design

This section details the architectural design involving the user, app interface, and the backend server. Refer
to Figure 2.1 for the design.

Figure 2.1: Architectural Design of ManageMe

2.2 Module Definitions

In this section, we explain the various components of our architectural design in detail.

2.2.1 User

As discussed in Section 1.5.1, user refers to the end-customer using our application.

2.2.2 App Interface

App Interface refers to the front-end design and the various functionalities that the user can select to navigate
the application.

2.2.3 Active Viewer Module

This module acts as the mediator between the App Interface and the Backend Engine. It is responsible for
handling and processing all the queries selected by the user and displays the active window and the query
results that the user has requested.

2.2.4 Authentication Module

This module is responsible for the Sign-In and Sign-up functionalities of our application. Once a user signs up,
his/her encrypted information will be saved on both the local device Database (DB) and synced with the cloud
server whenever internet connectivity is available. When a user signs in to the application, his/her previous
records are fetched from the DB and displayed on the screen.

2.2.5 Expense Management Module

This module is responsible for all expense-related tasks in the application. It provides functionality for adding,
deleting, or modifying expense records. It also provides features for tagging the expenses and filter the
expenses according to tags/date range. To do that, it sends the request to either the Tagging Module or the
Filter Module which then send back the relevant entries.

2.2.6 Calories Management Module

This module is responsible for tracking a user’s daily food intake. This module is also responsible for displaying
the food items along with their calories information already present in the database. The user then just has
to select the quantity of the food item and his/her food calories information will be displayed automatically.
For food items not present in the database, the user can add items and their calorie information manually.
The user can give tags to the food items like breakfast/lunch/dinner etc. and filter the entries according to
date range.

2.2.7 Notes Management Module

This module is responsible for making notes about important information relevant to the user. The user can
hide individual notes, give different colors and can also star them. The starred notes are displayed on the top
of the list. Here also the user can give different tags to the notes and filter the notes according to keywords
provided.

2.2.8 Tagging Module

This module is responsible for all tag related functionality in the application for the three management modules
- expenses, calories, and notes. It organizes the database according to the tags present in the system to make
tag-based queries faster.

2.2.9 Filtering Module

This module handles the filter queries from the three management modules. It provides an option to filter
the items according to the date range. It is responsible for adding timestamp information in the database so
that filter queries can be performed efficiently. For the Notes Management module, it provides the additional
functionality of filtering according to keywords provided by the user in the search box.

6

2.2.10 Export Module

This module handles requests by the user to export any kind of information present in the application (notes,
expenses, or calories) in a CSV/JSON format. This helps the user to make hard copies of the information for
further analysis and better planning.

2.3 Technology and Tools used

The following tools and technologies have been used in building our project.

2.3.1 Front End Interface

• XML: Used for developing layouts in Android application

• Java: Manually creating some complex layouts in the app. Fragment Views have been used as a building
block of our application theme.

• Kotlin: Designing activity layouts of some components.

• Material Design: Implemented new components like Floating Action Button while ensuring backward
compatibility.

2.3.2 Backend Server and Database

• CSV: Format used for exporting the user’s data so as to create a local copy.

• JSON: Database format used for storing the notes.

• SQLite: Relation database technology used to set up database, which is synchronization with the
Amazon Dynamo-DB on the AWS S3.

• Java: For writing the backend code.

• Kotlin: For coding some specific components in our backend.

• AWS: Amazon Web Services used for the deployment of the server. We use Amazon Dynamo-DB with
the sync framework to synchronize our SQLite records on the S3 buckets.

2.3.3 Development Tools

• Android Studio: For creating the overall mobile application.

• VS-Code: Smart code editor used while writing the backend.

• Git: Version control system used for sharing and collaboration amongst different members of the group.

7

8

Chapter 3

Detailed Design

3.1 Module APIs

This section will provide a brief description of all the APIs used by each module of the system.

3.1.1 Sign-In Module

API Function Description

registerUser(name, username, email) Registers a user in the database with initialisation

loginUser(name, password) Allows the user to log-in into the self-management portal if
the password is correct

computeHash(loginPassword) Computes the hash function for the user entered password

fetchHash(userId) Fetch the hash value of the actual password of the user with
this userId if present

verifyCredentials(givenHash, actualHash) Returns True if the hash values match otherwise False

fetchDetails(userId) Fetch the user details from the database upon successful
authentication

3.1.2 Expense Management Module

API Function Description

selectCurrency() Select currency type from a range of currency options.

addCategory(category) Add category to the pre defined set of catgories.

addExpense(amount, category, timestamp) Add expense entry.

modifyExpense(expenseId, expenseEntry) Select any current entry and modify it’s details.

deleteExpense(expenseId) Delete any current expense entry.

filterExpenses(dateRange) Select a date range or predefined ranges like day/week/mon-
th/year to filter the expense records.

3.1.3 Calories Management Module

API Function Description

addFoodItem(foodItem, foodCalories) Add any food and it’s calorie information to the existing food
database.

addItem(foodItem, quantity) Add food intake entry.

modifyItem(foodItemId, foodEntry) Select any current entry and modify it’s details.

deleteItem(foodItemId, foodEntry) Delete any current food entry.

filterItems(dateRange) Select a date range or predefined ranges like day/week/mon-
th/year to filter the calorie intake records.

3.1.4 Notes Management Module

API Function Description

newNote() Open the activity to create a new note (initially empty)

setFonts(noteId, fontProperties) Set the font style and font size of the note

setColorTheme(noteId, colorProperties) Set the color theme of the notes for better categorization

saveNote(noteId, title, bodyText) Save changes to the note currently added along with its
title

hideNoteBody(noteId) Hides the notes body in the List View of notes for privacy
reasons

searchNotes(keyText) Searches the keyText across across all the notes (both titles
and body) and displays the results matched

starNote(noteId) Stars the note for you and sorts the list view so as to show
the starred notes on the top of the list

updateNote(noteId) Opens an already existing note for updation

deleteNote(noteId) Deletes the selected note from the database

3.1.5 Filtering Module

API Function Description

filterExpenses([expenseId]List, dateRange) Filter expenses according to the provided date range or
select from pre-existing options like day/week/month/year.

filterFoodItems([foodItemId]List, dateRange) Filter calorie records according to the provided date range
or select from pre-existing options like day/week/mon-
th/year.

filterNotes([NoteId]List, keyword) Filter notes according to the keyword provided by the user
with only those notes displayed that contain the corre-
sponding keyword.

9

3.1.6 Tagging Module

API Function Description

createTagsExpenses(tagText) Creates a custom tag with the given tagText for Expenses

tagExpenseIntake(expenseId, [tagId]List) Tags a given expense entry with the specified list of tags

showTagwiseExpenses(tag) Shows all the expenses corresponding to a given text

deleteTagsExpenses(tagId) Deletes a tag from the tag list of expenses

createTagsCalories(tagText) Creates a custom tag with the given tagText for Calories

tagCalorieIntake(foodItemId, [tagId]List) Tags a given food entry with the specified list of tags

showTagwiseCalories(tag) Shows all the food items corresponding to a given text

deleteTagsCalories(tagId) Deletes a tag from the tag list of food items

createTagsNotes(tagText) Creates a custom tag with the given tagText for Notes

tagNotes(noteId, [tagId]List) Tags a given note entry with the specified list of tags

showTagwiseNotes(tag) Shows all the notes corresponding to a given text

deleteTagsNotes(tagId) Deletes a tag from the tag list of notes

3.1.7 Export Module

API Function Description

exportExpenses([ExpenseId]List) Export all expense reports in CSV/JSON format to local
device.

exportFoodLogs([FoodItemId]List) Export all food intake and calorie records in CSV/JSON
format to local device.

exportNotes([NoteId]List) Export all notes in CSV/JSON format to local device.

3.2 Database Design

This application will have 4 different databases.

• User Database: It is an SQLite database that will contain the information of all the registered users
of this application.

• Expense Database: It is also an SQLite database for maintain the expense records with timestamps
of all the users along with their custom categories.

• Calorie Database: It is also an SQLite database for maintain the food consumption records with
timestamps of all the users along with their custom categories.

• Notes Database: It is a JSON database for maintaining the user personalised custom notes along
with their meta information.

These are explained in detail in the following sub sections.

10

3.2.1 User Database

Field Type Description

UserID Integer Unique ID for the user

LastLogin DateTime Timestamp of latest login

UserName String User defined unique name for login purposes

Name String Name of the user

UserEmail String Email ID of the User

PasswordHash String Computed hash code of the user’s password

3.2.2 Expense Database

Field Type Description

ExpenseID Integer Unique ID for expense entry.

amount Integer Amount value for a particular expense entry.

category String Category of expense entry

LastUpdated DateTime Date and Time when expense entry was last updated.

3.2.3 Calorie Database

Field Type Description

FoodItemID Integer Unique ID for food entry.

name String Name of the item in food entry.

quantity Integer Quantity for a particular food entry.

calories Integer Calories corresponding to one portion of food item in the entry.

LastUpdated DateTime Date and Time when food entry was last updated.

3.2.4 Notes Database

Field Type Description

NoteId Integer Unique Note ID for each note

Title String Title of the note

Body String Text body of the note

Colour String Color theme of the note for categorization

Tags String List List of tags marked by the user for the node

Favoured Boolean Flag for indicating whether note is marked as favorite by user

FontSize 14/18/22 Font size of the note text

HideBody Boolean Flag used for hiding the body of the note

11

JSON database updates are fast, light and easier to synchronise with the remote database. Hence, a JSON
database is chosen for notes because the text updates/edits are made to the notes much more often than
expenses and fitness records.

Figure 3.1: Notes JSON Database

3.2.5 ER Diagram

Figure 3.2: ER Diagram

12

3.3 Screen Layouts

Figure 3.3: Sign-Up Page

13

Figure 3.4: Login Page

14

Figure 3.5: Home Page (Landing Page)

15

Figure 3.6: Expense Management page

16

Lovish Madaan

Lovish Madaan

Lovish Madaan

Lovish Madaan
Add Expense

Lovish Madaan

Lovish Madaan
Extra Options

Figure 3.7: Add Expense page

17

Lovish Madaan

Lovish Madaan

Lovish Madaan
Dropdown Categories

Figure 3.8: Additional options on Expenses Management page

18

Figure 3.9: Calories Management page with filter option displayed

19

Lovish Madaan

Lovish Madaan

Lovish Madaan
Filter options

Figure 3.10: Add food entry page

20

Lovish Madaan

Lovish Madaan

Lovish Madaan
Dropdown Categories

Figure 3.11: Notes Management page

21

Lovish Madaan

Lovish Madaan
Note Body Hidden

Lovish Madaan

Lovish Madaan
Starred Notes on
Top

Lovish Madaan

Lovish Madaan

Lovish Madaan
Search notes by
keyword

Figure 3.12: Add Note page

22

Lovish Madaan

Lovish Madaan

Lovish Madaan
Extra options
like Fonts,
Hide, etc.

Lovish Madaan

Lovish Madaan

Lovish Madaan

Lovish Madaan
Color Palette

3.4 Use Cases

3.4.1 Use Case Scenario-1: Sign-in

Type Description

Purpose User signs in to the application and his records are fetched.

Input Data Email id and password used to register for the application.

Output Data Taken to the app home page and user-specific information fetched.

Pre-conditions User is at the sign-in page, user has already registered using a valid email-id,
and user inputs the correct password.

Post-conditions Application home page displayed with username, and individual modules con-
tain user data fetched from the database.

Basic Flow Once the user inputs his email id and password, the sign-in API authenticates
the user and fetches the previously saved user information and records from
the database.

Alternative Flow Invalid username/password, user not signed up, database is corrupted.

Business Rules This will allow the user to go the application home page and his/her records -
expenses, calorie intake and notes are fetched and displayed in respective tabs.

High Level Code (using module APIs)

Client Side:

Listing 3.1: Sign-in Code at Client Side
1 // User is already registered, enters his/her details and then presses Sign-In Button
2

3 signIn() {
4 username, password <= getInputFromUser()
5 hashedPassword <= computeHash(password)
6 status <= loginUser(username, hashedPassword)
7 if(status == Success) {
8 userDetails <= fetchDetails(userId)
9 beginLogin(userDetails)

10 } else {
11 handleErrorStatus(status)
12 }
13 }

Server Side:

Listing 3.2: Sign-in Code at Server Side
1 // Receives the hash of the user entered password and the username
2

3 loginUser() {
4 username, userHash <= getInputFromClient()
5 correctHash <= fetchHash(username)
6 status <= verifyCredentials(userHash, correctHash)
7 sendStatus(status)
8 }

23

Sequence Diagram

Figure 3.13: Sequence Diagram for Login use-case

24

3.4.2 Use Case Scenario-2: Expense Management

Add Expense Entry

Type Description

Purpose User adds an expense entry on the expenses homepage.

Input Data Expense category, currency, amount.

Output Data Added entry displayed in the list of expenses.

Pre-conditions User is signed-in to the application, user is on the expenses page, cur-
rency category is selected from expense page settings.

Post-conditions Expenses home page updated with the added entry displaying date, cat-
egory, and expense amount, and total expense is also updated correctly.

Basic Flow Once the user inputs the required fields for adding an expense and clicks
ok, the entry is processed and added to the database, and then the
database sends OK signal to the front-end to display the entry on the
expenses list.

Alternative Flow Invalid amount/category, entry corrupted while processing, entry not
added to the database and not displayed on the page.

Business Rules This will allow the user to add expenses and manage his/her expenses
accordingly.

High Level Code (using module APIs)

Listing 3.3: Add Expenses
1 // User has logged-in successfully and has opened the Expenses Mangagement section of the app
2

3 addExpense() {
4 // User selects the currency of his choice in Settings
5 currency <= selectCurrency()
6

7 // User selects the category of his expenses
8 chosenCategory <= chooseCategory()
9

10 // User enters the expense, adds a record in ExpensesDB and returns
11 status <= addExpense(amount, category)
12

13 return status
14 }

25

Edit Expense Entry

Type Description

Purpose User edits an expense entry on the expenses homepage.

Input Data ExpenseId, new category, new amount.

Output Data Edited entry displayed with the changes in the list of expenses.

Pre-conditions User is signed-in to the application, user is on the expenses page, there
is atleast one expense entry.

Post-conditions Expenses home page updated with the edited entry displaying date, cat-
egory, and expense amount, and total expense is also updated correctly.

Basic Flow Once the user selects an expense entry and inputs the required fields for
changing the entry and clicks ok, the entry is processed and updated in
the database, and then the database sends OK signal to the front-end
to display the changes corresponding to the entry on the expenses list.

Alternative Flow Invalid amount/category, entry corrupted while processing, entry not
updated in the database and no change on the front-end.

Business Rules This will allow the user to edit expenses and manage his/her expenses
accordingly.

High Level Code (using module APIs)

Listing 3.4: Edit Expenses
1 // User has logged-in successfully and has opened the Expenses Mangagement section of the app
2

3 editExpense() {
4 // User taps on the expense to update
5 hasClicked, expenseId <= detectClickGesture()
6 status <= False
7 if(hasClicked == Successs) {
8 openUpdateActivity(expenseId)
9

10 // User enters the new expense
11 newExpenseEntry <= getExpenseInput()
12

13 // expense entry of expenseId has been modified
14 status <= modifyExpense(expenseId, newExpenseEntry)
15 }
16 return status
17 }

26

Delete Expense Entry

Type Description

Purpose User deletes an expense entry on the expenses homepage.

Input Data ExpenseId.

Output Data Deleted entry removed from the list of expenses, and total expenses
updated accordingly.

Pre-conditions User is signed-in to the application, user is on the expenses page, there
is atleast one entry on the expenses page.

Post-conditions Expenses home page updated with the deleted entry removed, and total
expense updated correctly.

Basic Flow Once the user selects an expense entry to delete and clicks ok, the entry
is processed and deleted from the database, and then the database sends
OK signal to the front-end to remove the entry from the expenses list.

Alternative Flow Expense entry is corrupted in the database.

Business Rules This will allow the user to delete expenses and manage his/her expenses
accordingly.

High Level Code (using module APIs)

Listing 3.5: Delete Expenses
1 // User has logged-in successfully and has opened the Expenses Mangagement section of the app
2

3 deleteExpense() {
4 // User presses and holds on the expense to delete
5 hasClicked, expenseId <= detectLongClickGesture()
6 status <= False
7 if(hasClicked == Success) {
8 showDeleteOption()
9

10 //User taps on the delete button to confirm
11 selection <= checkDeleteGesture()
12 if(selection == Success) {
13 status <= deleteExpense(expenseId)
14 }
15 }
16 return status
17 }

27

Sequence Diagram

Figure 3.14: Expense Management Sequence Diagram

28

3.4.3 Use Case Scenario-3: Calories Management

For the sake of brevity of this document, we have not shown all the pre-conditions/post-conditions correspond-
ing to this use-case since they were along the similar lines to those of Expenses Management (defined in the
previous use-case 3.4.2). However, we will state the High Level Code using our Module APIs for more clarity.

High Level Code (using Module APIs)

Listing 3.6: Add/Edit/Delete Food Item
1 // User has logged-in successfully and has opened the Calories Mangagement section of the app
2

3 // ADD FOOD ITEM ENTRY
4 addCalories() {
5 // User selects the category of his food item that he consumed
6 chosenFoodItem <= chooseFoodCategory()
7

8 // User selects the quantity of the food item (how many did he consume?)
9 numFoodItems <= selectCount()

10

11 // User enters the food items along with its quantity, adds a record in CaloriesDB and returns
12 status <= addItem(chosenFoodItem, numFoodItems)
13

14 return status
15 }
16

17 // EDIT FOOD ITEM ENTRY
18 editCalories() {
19 // User taps on the food item to update
20 hasClicked, foodItemId <= detectClickGesture()
21 status <= False
22 if(hasClicked == Successs) {
23 openUpdateActivity(foodItemId)
24

25 // User chooses the new food category
26 newFoodEntry <= chooseFoodCategory()
27

28 // food entry of foodItemId has been modified
29 status <= modifyItem(foodItemId, newExpenseEntry)
30 }
31 return status
32 }
33

34 // DELETE FOOD ITEM ENTRY
35 deleteCalories() {
36 // User presses and holds on the food item to delete
37 hasClicked, foodItemId <= detectLongClickGesture()
38 status <= False
39 if(hasClicked == Success) {
40 showDeleteOption()
41

42 //User taps on the delete button to confirm
43 selection <= checkDeleteGesture()
44 if(selection == Success) {
45 status <= deleteItem(foodItemId)
46 }
47 }
48 return status
49 }

29

Sequence Diagram

Figure 3.15: Calorie Management Sequence Diagram

30

3.4.4 Use Case Scenario-4: Notes Management

Add Note Entry

Type Description

Purpose User adds a note on the notes homepage.

Input Data Note Title, Note Body, Note color, displayBody.

Output Data Added note entry displayed in the list of notes.

Pre-conditions User is signed-in to the application, user is on the notes page.

Post-conditions Notes home page updated with the added entry displaying title, body
(if displayBody == True), and the option to star the note.

Basic Flow Once the user inputs the required fields for adding the note and clicks ok,
the entry is processed and added to the database, and then the database
sends OK signal to the front-end to display the entry on the notes list.

Alternative Flow No Title entered, entry corrupted while processing, entry not added to
the database and not displayed on the page.

Business Rules This will allow the user to add notes and manage his/her notes page
accordingly.

High Level Code (Using Module APIs)

Listing 3.7: Add Note
1 // User has logged-in successfully and has opened the Notes Mangagement section of the app
2

3 addNotes() {
4 // User clicks on the new note (+) button on the bottom right of the screen
5 noteId <= newNote()
6

7 // User selects the font style and size of the note
8 fontSize, fontStyle <= selectFontProperties()
9 setFonts(noteId, (fontSize, fontStyle))

10

11 // User selects the color theme from the color palette
12 colorProps <= selectColorTheme()
13 setColorTheme(noteId, colorProps)
14

15 // If user wants to hide the text body of his/her note
16 hideNoteBody(noteId)
17

18 // User enters the title, text body of the note and clicks on ’Save Changes’
19 status <= saveNote(noteId, title, textbody)
20

21 return status
22 }

31

Edit Note Entry

Type Description

Purpose User edits a note entry on the notes homepage.

Input Data NoteId, new title, new body, new color, displayBody.

Output Data Edited entry displayed with the changes in the list of notes.

Pre-conditions User is signed-in to the application, user is on the notes page, there is
atleast one note entry.

Post-conditions Notes home page updated with the edited entry displaying the changes
correctly and star option retained.

Basic Flow Once the user selects a note entry and inputs the required fields for
changing the entry and clicks ok, the entry is processed and updated in
the database, and then the database sends OK signal to the front-end
to display the changes corresponding to the entry on the notes list.

Alternative Flow Empty title, entry corrupted while processing, entry not updated in the
database and no change on the front-end.

Business Rules This will allow the user to edit notes and manage his/her notes page
accordingly.

High Level Code (Using Module APIs)

Listing 3.8: Edit Note
1 // User has logged-in successfully and has opened the Notes Mangagement section of the app
2

3 editNotes() {
4 // User taps on the note item to update
5 hasClicked, noteId <= detectClickGesture()
6 status <= False
7 if(hasClicked == Successs) {
8 updateNote(noteId)
9

10 // User chooses the new food category
11 newFoodEntry <= chooseFoodCategory()
12

13 // User selects the font style and size of the note
14 fontSize, fontStyle <= selectFontProperties()
15 setFonts(noteId, (fontSize, fontStyle))
16

17 // User selects the color theme from the color palette
18 colorProps <= selectColorTheme()
19 setColorTheme(noteId, colorProps)
20

21 // If user wants to hide the text body of his/her note
22 hideNoteBody(noteId)
23

24 // User edits the title, text body of the note and clicks on ’Save Changes’
25 status <= saveNote(noteId, title, textbody)
26 }
27 return status
28 }

32

Delete Note Entry

Type Description

Purpose User deletes a note entry on the notes homepage.

Input Data NoteId.

Output Data Deleted entry removed from the list of notes.

Pre-conditions User is signed-in to the application, user is on the notes page, there is
atleast one entry on the notes page.

Post-conditions Notes home page updated with the deleted entry no longer visible.

Basic Flow Once the user selects a note entry to delete and clicks ok, the entry is
processed and deleted from the database, and then the database sends
OK signal to the front-end to remove the entry from the notes list.

Alternative Flow Note entry is corrupted in the database.

Business Rules This will allow the user to delete notes and manage his/her notes ac-
cordingly.

High Level Code (Using Module APIs)

Listing 3.9: Delete Note
1 // User has logged-in successfully and has opened the Notes Mangagement section of the app
2

3 deleteNotes() {
4 // User presses and holds on the food item to delete
5 hasClicked, noteId <= detectLongClickGesture()
6 status <= False
7 if(hasClicked == Success) {
8 showDeleteOption()
9

10 //User taps on the delete button to confirm
11 selection <= checkDeleteGesture()
12 if(selection == Success) {
13 status <= deleteNote(noteId)
14 }
15 }
16 return status
17 }

33

Sequence Diagram

Figure 3.16: Notes Management Sequence Diagram

34

3.4.5 Use-Case Scenario-5: Tagging & Filtering Entries

Tagging Entries

Type Description

Purpose User tags the entries according to the type of the item added.

Input Data Item Value, Category

Output Data Item value added to the database with the input category.

Pre-conditions User is signed-in to the application, user is on the relevant page - ex-
penses/calories/notes.

Post-conditions Relevant entry updated in the database with the category assigned to
the item.

Basic Flow Once the user selects the tags associated with the item and saves the
changes, the corresponding entry gets marked in the database success-
fully.

Alternative Flow Invalid category, incorrect query response due to database corruption.

Business Rules This will allow the user to tag and analyze the records according to
categories and manage his/her tasks accordingly.

High Level Code (Using Module APIs)

Listing 3.10: Tagging Entries
1 // User has logged-in successfully and has opened one of Expenses/Calories/Notes section of the app
2

3 // Add Tags
4 addTags() {
5 // User can manually create his/her own desired tag
6 tagText <= getUserInput()
7 createTags(tagText)
8

9 // User selects the tags/categories to assign
10 [tagId]List <= selectTags()
11 tagItemIntake(itemId, [tagId]List)
12

13 // To show all the items with that tag
14 showTagwiseItems(tagId)
15 }
16

17 // Delete Tags
18 deleteTags() {
19 // User selects the tags/categories to delete
20 [tagId]List <= selectTags()
21 deleteTags([tagId]List)
22 }

35

Filtering Entries

Type Description

Purpose User filters the entries according to date range or categories.

Input Data [ItemId]List, dateRange, byDate, category (optional argument)

Output Data Only filtered entries displayed on the page according to date-
range/categories.

Pre-conditions User is signed-in to the application, user is on the relevant page - ex-
penses/calories/notes.

Post-conditions Relevant home page updated with the filtered entries, and total statistics
updated accordingly.

Basic Flow Once the user selects the date range and clicks ok, the request is sent
to the Filter Module and it queries the database, and then the module
sends the filtered items to the front-end to display on the page.

Alternative Flow Invalid category/date-range, incorrect query response due to database
corruption.

Business Rules This will allow the user to filter and analyze the records according to
date range/categories and manage his/her tasks accordingly.

High Level Code (Using Module APIs)

Listing 3.11: Filtering Entries
1 // User has logged-in successfully and has opened one of Expenses/Calories/Notes section of the app
2

3 // Filter Entries
4 filterEntries() {
5 // User selects the category (optional argument)
6 category <= chooseCategory()
7 [itemId]List <= getCategoryItems(category)
8

9 // User selects the data range. Other options include Daily, Weekly, Monthly, etc.
10 fromDate <= getUserInput()
11 toDate <= getUserInput()
12

13 filteredItems <= filterItems([itemId]List, (fromDate, toDate))
14

15 return filteredItems
16 }

36

Sequence Diagram

Figure 3.17: Sequence Diagram for Filtering/Tagging

37

38

Chapter 4

Deployment Design

We will deploy our front-end using an Android application (APP) and will use a Back-end server to make all
the API calls from our application.

We are following a three-tier deployment strategy. Having this multi-tier strategy helps in building a scalable,
robust, and secure service.

4.1 Three-Tier deployment

The three tiers in our deployment are the Client tier (frontend), Application Interface tier and a Database
tier. The Client tier handles the interactions with the user in the form of a Graphical User Interface (GUI).
The Application Interface tier handles the queries from the Client tier, processes the requests, and acts as a
mediator between the Client tier and the Database tier. The Database tier stores all the information in the
form of relational tables and acts as the knowledge base for all the queries.

4.1.1 Tier-1: Client

This tier is at the frontend. Client will have an Android based application that will be the face of this service.
The frontend communicates with other tiers through application program interface (API) calls.

Deploying an Android application would require us to create an account on the app store, and publish the
application there so users can access and download it easily.

4.1.2 Tier-2: Application Interface

It forms the major component of our application, and is distributed on several servers. These servers are
hosted with the help of AWS that ensures high availability (24x7) and performance. AWS object stores have
redundancy for high fault tolerance even if one of the servers is down. It’s critical that it’s available 24x7 to
support and respond to the client API calls.

4.1.3 Tier-3: Database

This tier is hosted with some redundancy too, and is mainly responsible for keeping an account of all the
information related to the user and the subsequent method calls. This allows the server to handle all the
incoming data-lookup related queries.

	Introduction
	Purpose
	Scope
	Overview
	References
	Definitions, Acronyms and Abbreviations
	Definitions
	Abbreviations

	System Description
	Architectural Design
	Module Definitions
	User
	App Interface
	Active Viewer Module
	Authentication Module
	Expense Management Module
	Calories Management Module
	Notes Management Module
	Tagging Module
	Filtering Module
	Export Module

	Technology and Tools used
	Front End Interface
	Backend Server and Database
	Development Tools

	Detailed Design
	Module APIs
	Sign-In Module
	Expense Management Module
	Calories Management Module
	Notes Management Module
	Filtering Module
	Tagging Module
	Export Module

	Database Design
	User Database
	Expense Database
	Calorie Database
	Notes Database
	ER Diagram

	Screen Layouts
	Use Cases
	Use Case Scenario-1: Sign-in
	Use Case Scenario-2: Expense Management
	Use Case Scenario-3: Calories Management
	Use Case Scenario-4: Notes Management
	Use-Case Scenario-5: Tagging & Filtering Entries

	Deployment Design
	Three-Tier deployment
	Tier-1: Client
	Tier-2: Application Interface
	Tier-3: Database

